52 research outputs found

    On the rocking behavior of rigid objects

    Get PDF
    A novel formulation for the rocking motion of a rigid block on a rigid foundation is presented in this work. The traditional piecewise equations are replaced by a single ordinary differential equation. In addition, damping effects are no longer introduced by means of a coefficient of restitution but understood as the presence of impulsive forces. The agreement with the classical formalism is very good for both free rocking regime and harmonic forcing excitation

    Perturbation-based stochastic multi-scale computational homogenization method for the determination of the effective properties of composite materials with random properties

    Get PDF
    Quantifying uncertainty in the overall elastic properties of composite materials arising from randomness in the material properties and geometry of composites at microscopic level is crucial in the stochastic analysis of composites. In this paper, a stochastic multi-scale finite element method, which couples the multi-scale computational homogenization method with the second-order perturbation technique, is proposed to calculate the statistics of the overall elasticity properties of composite materials in terms of the mean value and standard deviation. The uncertainties associated with the material properties of the constituents are considered. Performance of the proposed method is evaluated by comparing mean values and coeffcients of variation for components of the effective elastic tensor against corresponding values calculated using Monte Carlo simulation for three numerical examples. Results demonstrate that the proposed method has suffcient accuracy to capture the variability in effective elastic properties of the composite induced by randomness in the constituent material properties

    Perturbation-based stochastic multi-scale computational homogenization method for woven textile composites

    Get PDF
    In this paper, a stochastic homogenization method that couples the state-of-the-art computational multi-scale homogenization method with the stochastic finite element method, is proposed to predict the statistics of the effective elastic properties of textile composite materials. Uncertainties associated with the elastic properties of the constituents are considered. Accurately modeling the fabric reinforcement plays an important role in the prediction of the effective elastic properties of textile composites due to their complex structure. The p-version finite element method is adopted to refine the analysis. Performance of the proposed method is assessed by comparing the mean values and coefficients of variation for components of the effective elastic tensor obtained from the present method against corresponding results calculated by using Monte Carlo simulation method for a plain-weave textile composite. Results show that the proposed method has sufficient accuracy to capture the variability in effective elastic properties of the composite induced by the variation of the material properties of the constituents

    Galactic-Centre Gamma Rays in CMSSM Dark Matter Scenarios

    Full text link
    We study the production of gamma rays via LSP annihilations in the core of the Galaxy as a possible experimental signature of the constrained minimal supersymmetric extension of the Standard Model (CMSSM), in which supersymmetry-breaking parameters are assumed to be universal at the GUT scale, assuming also that the LSP is the lightest neutralino chi. The part of the CMSSM parameter space that is compatible with the measured astrophysical density of cold dark matter is known to include a stau_1 - chi coannihilation strip, a focus-point strip where chi has an enhanced Higgsino component, and a funnel at large tanb where the annihilation rate is enhanced by the poles of nearby heavy MSSM Higgs bosons, A/H. We calculate the total annihilation rates, the fractions of annihilations into different Standard Model final states and the resulting fluxes of gamma rays for CMSSM scenarios along these strips. We observe that typical annihilation rates are much smaller in the coannihilation strip for tanb = 10 than along the focus-point strip or for tanb = 55, and that the annihilation branching ratios differ greatly between the different dark matter strips. Whereas the current Fermi-LAT data are not sensitive to any of the CMSSM scenarios studied, and the calculated gamma-ray fluxes are probably unobservably low along the coannihilation strip for tanb = 10, we find that substantial portions of the focus-point strips and rapid-annihilation funnel regions could be pressured by several more years of Fermi-LAT data, if understanding of the astrophysical background and/or systematic uncertainties can be improved in parallel.Comment: 33 pages, 12 figures, comments and references added, version to appear in JCA

    A neural network approach for simulating stationary stochastic processes

    No full text
    Structural Engineering and Mechanics32171-94SEGM

    Prologue

    No full text
    corecore